The Year of the
Orchestrator

Hi!

I'm Pere Villega

« Suffering computers for 20+ years
« Believer on Al for Software Development

« Using it in real projects!

 And made too many slides...

Al 1s Relentless

Vibe Coding
MCP
(Model Context Claude Code
Sonnet 3.5 Protocol) Sonnet 3.7 Claude 4 Opus 4.1 Sonnet 4.5 Skills Opus 4.5

OCT NOV == MAY AUG SEP oCT NOV
2024 2024 2025 PASPAS PAYAS) 2025 PASYAS) 2025

And this is ONLY Anthropic...

...and now Orchestrators

« See how we got here

« Understand what they are

« Consider how will they impact us

DANGER LIES AHEAD

DO NOT USE ORCHESTRATORS

(They are coming. But they are not there yet.)

ORCHESTRATORS

Agents

LLM The "brain" - reasons and decides next action
Tools The "hands" - read files, run code, call APls
State/Memory Accumulated context across iterations

Stop Condition When to exit (task done, max steps, error)

Agents

Input & Context

Reasoning (LLM)

h 4

Tool Selection

Response

Tool Execution

Agents

const env = { state: initialState };
const tools = new Tools(env);

while (true) {

const action = 1lm.run(${system_prompt} ${env.state});

if (action.type === "final_response") break;

env.state = tools.run(action);

Agents

« The LLM has a limited window (200k)
« ~176K truly usable
e Realistic: ~80k to 120k usable
« Solution:
« Use external markdown files

« Ask the agent to read them at the start

Ralph Wigum (July 2025)

Ralph Wigum

« Two prompts, one loop
« New context window each loop

« Hands-off: runs until completion

« DANGER: use a sandbox. This requires YOLO mode.

Ralph Wigum

« Define Job to be done talking to the LLM

« Identify topics (authentication, scheduling, reports, etc.)

« OUTPUT: one spec file per topic.

Ralph Wigum

« Two prompt files: PLANING and BUILDING
« PLANNING: Generate/update IMPLEMENTATION_PLAN.md

« BUILDING: Implement 1 task from plan, commit, update plan as a side effect

« IMPORTANT: Backpressure => Validation (compiler, tests, linter, etc.)

Ralph Wigum

project-root/

loop.sh
PROMPT_build.md
PROMPT_plan.md
AGENTS.md
IMPLEMENTATION_PLAN.md
specs/

—— [jtbd-topic-al.md
— [jtbd-topic-b].md
src/

src/1lib/

HOH B H H R

H

Ralph loop script

Build mode instructions

Plan mode instructions

Operational guide loaded each iteration
Prioritized task list (generated/updated by Ralph)
Requirement specs (one per JTBD topic)

Application source code
Shared utilities & components

#!/bin/bash
Usage: ./loop.sh [plan]

Parse arguments
if ["$1" = "plan"]; then
Plan mode
MODE="plan"
PROMPT_FILE="PROMPT_plan.md"
else
Build mode, unlimited (no arguments or invalid input)
MODE="build"
PROMPT_FILE="PROMPT _build.md"
fi

CURRENT_BRANCH=$(git branch --show-current)

while true; do
cat "$PROMPT_FILE" | claude -p \
--dangerously-skip-permissions \
--output-format=stream-json \
--model opus \
--verbose

Push changes after each iteration
git push origin "$CURRENT_BRANCH"

done

Ralph Wigum

« It works. But it is sequential

« Wouldn't it be great if we could parallelise it?

Orchestrators

« Multiple Agents on the same task requires:
« Task management & coordination
« Observability

* Recovery

« An Orchestrator is a tool that handles all that

Orchestrators

« Specific Agents and Commands in .Claude

« Plenty of tooling built this way. That's not it

« Plugins for Claude

« Sidenote: The Anthropic Ralph plugin is not Ralph!

Orchestrators

Primary Al coordinator
Watchdog for system health
Agent recovery processes
Agent for merge management
Ephemeral workers

Named agents for humans

Agents at workspace and project level
Project worktrees

Agent mailboxes (communication)
Task tracking (Beads)

Workflow orchestration

Orchestrators

Assume Gas Town installed

gt rig add myproject https://github.com/you/your-repo.git
gt crew add my_name --rig myproject

gt mayor attach # This opens a Claude (Code session

> I need to add a module to myproject that reads weather data
from the OpenWeatherMap API. It should fetch current conditions
and cache them for 5 minutes. Include error handling and tests.

check status
gt mail inbox
gt convoy show

WHY DOES THIS MATTER

Orchestrators

« Claude Code TeammateTool (found in Claude Code v2.1.19)

« Provides: inter-agent messaging, plan approval workflows, coordination between
agents, etc.

« Aot of the infrastructure that Orchestrators are building right now, is there

What’s coming

This is happening

. More code written. Reviews?
« More agents. Monitoring?

e Coordination between Orchestrators?

The Question

How do you adapt your
processes for this

The Answer

We don't know (yet)

It's a new world

How to use them

« PR review-based workflows

« Keep FE/BE/Ops split across multiple teams
« Tasks without acceptance criteria

« Lack of Cl (backpressure)

« No automated E2E testing

« Lack of observability

How to use them

« "Old" best practices are even more crucial

« Teams should own a vertical

« Need good architecture from the start

« Requirements can’t have major gaps

« Quality gates (ci, tests, alerting, observability) steer the outcome

« SWEroleis changing, a lot

How to use them

« Embedded knowledge in the code is bad
« It must be explicit in specs, tests
« Less people owning a vertical
* Microservices (decoupling) can be good
¢ SWE must understand/own product outcomes
« Black-box testing and workflow-based testing matter more

 More to be discovered during 2026

TL;DR

Start adjusting your processes

Questions?

"We finally built a software architecture where 'asking nicely and retrying' is a legitimate error-handling strategy."

Links

« Agents: https://strandsagents.com/latest/documentation/docs/user-
guide/concepts/agents/agent-loop/

« A good agent to inspect: https://shittycodingagent.ai

« Ralph: https://github.com/ClaytonFarr/ralph-playbook

« Not an orchestrator: https://github.com/glittercowboy/get-shit-done
« Gas Town: https://github.com/steveyegge/gastown

« Beads: https://github.com/steveyegge/beads

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

